NTU Creates Ultrathin Ta₃N₅ Photoanodes

Researchers from the Department of Chemistry at National Taiwan University have developed a novel method to synthesize ultrathin Ta₃N₅ photoanodes using a chemically engineered Ta₂N₃ precursor. This approach enables a 100nm tantalum nitride layer to achieve performance comparable to much thicker films made with conventional oxide precursors, while reducing tantalum usage.

The ultrathin films exhibit improved charge separation and enhanced photocurrent generation, overcoming the poor charge transport issues that have previously limited the practical application of Ta₃N₅ photoanodes. Trace subnitride impurities formed at the interface with silicon act as conductive pathways, facilitating efficient extraction of photogenerated carriers.

This advancement not only lowers material costs but also opens new possibilities for scalable solar-driven hydrogen production. By combining structural, optical, and electrochemical optimization, the study demonstrates a broadly applicable strategy for designing next-generation photoelectrodes.

https://labspotlight.ntu.edu.tw/focus/123?locale=zh-TW

Cornell Law Expands East Asian Ties via NTU

Cornell Law School has jointly launched a new student exchange partnership with National Taiwan University’s College of Law, widely recognized as Taiwan’s leading law school. This builds on Cornell Law’s long-standing program with Waseda University’s School of Law in Japan, creating a trio of academic partnerships—true sister schools across East Asia and the United States.

To mark this milestone, the inaugural Waseda–National Taiwan University–Cornell Interdisciplinary Workshop took place at Waseda University in Tokyo on July 30–31, followed by the first-ever National Taiwan University–Waseda–Cornell Workshop in Taipei on August 4. The events gathered Deans, Vice-Deans, and faculty from all three institutions to present research, exchange perspectives, and deepen institutional collaboration.

Cornell Law was represented by Professors Valerie Hans, Dan Awrey, and Yun-chien Chang, each of whom presented working papers and engaged in discussions with Taiwanese and Japanese scholars. The workshops were co-sponsored by the Clarke Program in East Asian Law and Culture, and generously supported by the Tokyo-based law firm, Mori Hamada & Matsumoto, an alumni affiliate and friend of Cornell Law School.

National Taiwan University Alumnus Prof. Cho-Yun Hsu Wins Prestigious Tang Prize in Sinology

On June 20, National Taiwan University Distinguished Alumnus and eminent historian Prof. Cho-Yun Hsu received the sixth Tang Prize in Sinology. Despite physical challenges, he made remarkable contributions to historical studies, combining Eastern and Western perspectives and mentoring students worldwide. His dedication to scholarship and social consciousness earned him this prestigious recognition.

Prof. Hsu expressed gratitude to the Tang Prize Committee and to National Taiwan University, which he credited as the foundation of his academic path. Entering academia in 1949, he first studied foreign languages before transferring to history, graduating in 1953. With the support of mentors, he pursued his doctorate at the University of Chicago and later returned to teach and reform the history curriculum, introducing modern interdisciplinary methods.

Though he went on to a distinguished career at the University of Pittsburgh, Prof. Hsu often returned as a visiting professor, inspiring new generations. His achievement follows in the footsteps of Prof. Ying-Shih Yu, the first Tang Prize laureate in Sinology, strengthening National Taiwan University’s role as a global hub for the field.

Study of Male Denisovan from Taiwan in Science

A groundbreaking study published in Science confirmed that a fossil discovered in Taiwan belonged to a male Denisovan, marking the first molecular evidence of this ancient human lineage in low-latitude regions. The research was led by an international team of 15 scientists, including Associate Professor Cheng-Hsiu Tsai from National Taiwan University and collaborators from Taiwan, Japan, and Denmark. Using ancient protein analysis (paleoproteomics), the team identified Denisovan traits in the fossil and further determined the individual’s sex by detecting the male-specific amelogenin Y protein.

The discovery is significant because Denisovan fossils with molecular confirmation have so far been limited to Siberia and Tibet, even though genetic studies suggest their presence across East Asia, Southeast Asia, and Oceania. Until now, warmer regions lacked direct fossil evidence. This Taiwanese specimen therefore fills a critical gap, expanding our understanding of Denisovan distribution and the complexity of human evolution.

While ancient DNA could not be retrieved, the successful extraction of proteins offered crucial molecular insights. The fossil, curated at the National Museum of Natural Science in Taiwan, was recovered from the seabed between Taiwan and the Penghu Islands, where other prehistoric animal remains such as Stegodon have also been found. The findings highlight the scientific importance of Taiwan’s fossil record for studying ancient humans and evolutionary history.

This is not the first time fossils from Taiwan have drawn global attention. In 2023, Tsai’s lab contributed to another Science paper on island extinctions, demonstrating the international impact of Taiwan’s paleontological research. Together, these discoveries reaffirm Taiwan’s role in uncovering key chapters of life’s evolutionary journey.

NTU Launches Global Research Center

The Max Planck-IAS-NTU Center (MPC) for Particle Physics, Cosmology, and Geometry has been founded through cooperation between the Max Planck Society in Germany, the Institute for Advanced Study (IAS) in Princeton, and National Taiwan University (NTU). The Center will begin operations in July 2025 with five years of initial funding. An opening symposium will be held at NTU in September 2025, followed by a kick-off conference at IAS in March 2026.

Led by co-directors Johannes Henn (Max Planck Institute for Physics), Nima Arkani-Hamed (IAS), and Daniel Baumann (NTU), the Center unites leading scholars in particle physics, cosmology, and geometry. Their goal is to develop new frameworks for quantum field theory, study particle interactions, and explore the origins of the Universe.

The initiative will act as a global hub for collaboration, engaging faculty, postdoctoral scholars, and students from around the world. Planned activities include international workshops, summer schools, and research exchanges across institutions and disciplines.

Funded by NTU and Taiwan’s National Science and Technology Council, the Center is part of the broader Max Planck Centers program. NTU President Wen-Chang Chen emphasized that this collaboration strengthens Taiwan’s role in global science and will spark exciting new discoveries in fundamental physics.

NTU Achieves Beating Heart Transplant

National Taiwan University Hospital (NTUH) has successfully completed the world’s first beating heart transplant with zero ischemic time, with the patient recovering smoothly and being discharged. This groundbreaking surgery was recently featured in the Journal of Thoracic and Cardiovascular Surgery Techniques, marking a major advancement in global heart transplantation.

Since performing Taiwan’s first heart transplant in 1990, National Taiwan University Hospital has completed over 700 transplants, establishing itself as a national leader in the field. This extensive experience laid the foundation for the innovative surgery, which represents a paradigm shift in organ transplantation.

Unlike traditional heart transplants that require cold storage and inevitably involve ischemic time, the new method maintains continuous perfusion, keeping the donor heart beating throughout the procedure. This approach eliminates ischemic injury, minimizes reperfusion damage, and is expected to significantly improve both heart function and patient survival rates.

As a leading force in cardiac transplantation in Asia, National Taiwan University Hospital’s achievement opens new possibilities for organ preservation and transplant success worldwide. Moving forward, the hospital will continue advancing its techniques and technologies, enabling more patients to benefit from zero-ischemic-time transplantation.

NTU–Japan Study Uncovers Adzuki Bean Origins

A multinational team led by Prof. Cheng-Ruei Lee of National Taiwan University (NTU) has revealed that domesticated adzuki beans originated in Japan. Their findings, published in Science, show that agriculture in Japan began thousands of years earlier than previously believed, offering new insights into the history of farming in East Asia.

Working with Dr. Ken Naito of Japan’s National Agriculture and Food Research Organization (NARO), the team analyzed genetic material from adzuki beans preserved in Japan’s national germplasm collections. The results provide the first genomic evidence that the Jōmon people, long thought to be solely foragers, practiced early crop selection between 3,000 and 5,000 years ago.

The researchers also identified genes responsible for seed color and domestication traits, finding mutations that date back nearly 10,000 years. This suggests that adzuki bean trait selection began far earlier than previously assumed and demonstrates how genomics can complement archaeological research.

This study, supported by Taiwan’s National Science and Technology Council, Academia Sinica, and NTU, not only reshapes our understanding of Japanese agriculture but also opens new directions for crop breeding and plant domestication research.

Link to the article in Science: https://www.science.org/doi/10.1126/science.ads2871

NTU Hospital links metabolism to mortality

Liver disease remains a major health issue in Taiwan, driven by the high prevalence of chronic hepatitis B (HBV) and hepatitis C (HCV). A research team at National Taiwan University (NTU) Hospital, led by Vice Superintendent Jia-Horng Kao, has been investigating the interaction between hepatitis viruses and metabolic abnormalities. Their latest findings, published in the Journal of Hepatology, have drawn global attention.

Prof. Tung-Hung Su and Dr. Shang-Chin Huang reported that HBV patients with metabolic syndrome face a significantly higher risk of death. In contrast, those with only simple fatty liver but no other metabolic issues have a 50% lower long-term mortality rate. For HCV, Prof. Chen-Hua Liu showed that even after patients are cured with direct-acting antiviral (DAA) therapy, those with metabolic-associated fatty liver disease (e.g., diabetes, hypertension, obesity) remain at a substantially higher risk of developing hepatocellular carcinoma (HCC). These findings stress the importance of early intervention for metabolic abnormalities alongside antiviral treatment.

Prof. Jun-Ren Liu, Director of National Taiwan University (NTU) Hospital’s Hepatitis Research Center, emphasized that in addition to controlling hepatitis viruses, patients must also manage metabolic health through weight control, diet, and regular monitoring. Timely screening for blood pressure, blood sugar, and lipid abnormalities, combined with regular liver ultrasound, can help reduce risks of cirrhosis and liver cancer and improve long-term prognosis.

Full articles:

https://www.journal-of-hepatology.eu/article/S0168-8278(24)02763-6/fulltext
https://www.journal-of-hepatology.eu/article/S0168-8278(24)02578-9/fulltext

Study: Sucralose Harms Sperm and Hormones

Further context

This article is a repost from News-Medical, covering a recent study led the research team of Professor Shih-Min Hsia at Taipei Medical University (TMU)’s College of Nutrition. The study investigates the potential effects of sucralose on male reproductive health. The research has also been featured by New York Post and MSN, highlighting the growing international attention to TMU’s contributions to preventive and translational medicine.

Male infertility is a global health concern, impacting 8% to 12% of couples and contributing to nearly half of infertility cases worldwide. Male infertility is affected by hormonal, environmental, and genetic factors that impede spermatogenesis and reproductive function. Dietary and lifestyle changes, including the elevated intake of non-nutritive sweeteners (NNSs) and sugar-sweetened beverages, are among these factors implicated in the growing prevalence of infertility.

Sucralose, an NNS, constitutes 30% of the sweetener market in the United States. Although sucralose has antibacterial properties and lower calories, there are emerging concerns about potential health risks and environmental persistence. It is also a persistent contaminant in aquatic systems, with studies revealing its consistent presence throughout the urban water cycle. Notably, the study highlights concerns about sucralose-6-acetate, a genotoxic byproduct of sucralose manufacturing and metabolism, which may exacerbate health and environmental risks. Despite research on NNSs, data on potential links between sucralose and male infertility are limited.

About the study

In the present study, researchers evaluated the effects of sucralose on male reproductive health. Male Sprague-Dawley (SD) rats, aged six weeks, were acclimated for a week under controlled conditions and subsequently randomized to one of four experimental groups. Sucralose was administered at 1.5 mg/kg, 15 mg/kg, 45 mg/kg, or 90 mg/kg for two months.

The controls received deionized water. Body weight was monitored weekly for eight weeks. At the end of the study, animals were euthanized, and blood samples were collected for biochemical analyses. Organs such as the liver, spleen, heart, testes, epididymis, and kidneys were harvested for histopathological evaluation.

The cauda epididymis was cut into pieces and briefly maintained in culture medium, and the supernatant was used for sperm motility analysis. Sperm samples were subject to a Western blot analysis to evaluate DNA damage markers. Besides, enzyme-linked immunosorbent assay was used to measure follicle-stimulating hormone (FSH), luteinizing hormone (LH), and Kisspeptin1 (KISS1).

Chemiluminescence immunoassays were performed to measure serum testosterone, alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Further, mouse Sertoli cells (TM4) and Leydig cells (TM3) were treated with varying concentrations of sucralose for 24–72 hours. These cells were subject to intracellular reactive oxygen species (ROS), cell viability, and Western blot analyses. To assess autophagy-lysosome dysfunction, researchers used Bafilomycin A1, a compound that blocks lysosomal acidification, revealing impaired fusion of autophagosomes and lysosomes.

The Kolmogorov-Smirnov test assessed data normality. Non-parametric tests were applied for data violating normality assumptions. A two-way analysis of variance was performed to evaluate the effects of sucralose and exposure duration. Group differences were compared using the Mann-Whitney U test or the Student’s t-test.

Findings

TM3 and TM4 cells exposed to varying sucralose concentrations (1 μM, 10 μM, 100 μM, 1000 μM, and 10,000 μM) had significantly lower cell viability. Cells also showed higher levels of microtubule-associated protein 1A/1B light chain 3B, form II (LC3B-II) at 1000 or 10,000 μM and slightly lower p62 levels. These changes, combined with reduced cathepsin B (a lysosomal enzyme), suggest impaired autophagic degradation. Following sucralose treatment, there was a significantly lower expression of cathepsin B, indicative of impaired lysosomal function.

ROS levels in TM3 and TM4 cells after sucralose exposure at 1 mM, 2.5 mM, 5 mM, 7.5 mM, or 10 mM were significantly higher; sucralose-treated cells also had elevated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and heme-oxygenase 1 (HO-1) levels, suggesting an increase in oxidative stress. Notably, exposed cells had a reduction in taste receptor type 1 member 3 (T1R3) protein expression.

Moreover, co-treatment with a known T1R3 antagonist (lactisole) repressed T1R3 expression more than sucralose treatment alone. To further examine the relevance of T1R3 modulation, rat pituitary adenoma cells (RC-4B/C) were treated with sucralose, with or without lactisole co-treatment. This revealed a significant reduction in LH levels dose-dependently. Lactisole co-treatment exacerbated this suppression, especially at lower sucralose levels.

SD rats exposed to sucralose showed no differences in body weight, AST or ALT levels, and heart and liver indices between groups. Although the appearance of reproductive organs was not remarkably different, exposed animals had significantly lower epididymis and testis indices. Further, rats showed significant reductions in serum testosterone and LH levels and serum and testicular KISS1 levels. KISS1, a key regulator of the hypothalamic-pituitary-gonadal (HPG) axis, is critical for initiating puberty and maintaining reproductive hormone balance; its suppression may directly contribute to impaired fertility.

Sucralose exposure also reduced protein levels of T1R3 in the testes. Exposed animals had abnormal sperm morphology (with coiled and bent tails) and lower sperm viability. Histological examination of the testes showed changes in the seminiferous epithelium, including severe vacuolization, disrupted germ cell organization, and nuclear condensation.

DNA damage was also observed in sperm, indicative of cellular impairment. The testes of sucralose-exposed animals had higher levels of LC3B and lower levels of p62, suggesting changes in autophagy. Moreover, exposed animals had higher serum and testicular levels of malondialdehyde, indicating increased lipid peroxidation.

Conclusions

Taken together, sucralose exposure adversely affects male reproductive outcomes in rats by inducing oxidative stress, causing DNA damage, and disrupting autophagy. The study notes that in vitro doses (up to 10 mM) likely exceed typical human dietary exposure, warranting caution in extrapolating results to real-world intake levels.

The findings underscore the need for careful evaluation of dietary NNSs and call for better food safety regulations to alleviate potential risks. Additionally, the environmental persistence of sucralose and its byproduct, sucralose-6-acetate, highlights broader ecological concerns.

Further studies are required to examine dose-response relationships, long-term effects, and underlying molecular mechanisms to comprehensively delineate the adverse effects of sucralose.

Look for More Information

Original Study: Exposure to Sucralose and Its Effects on Testicular Damage and Male Infertility: Insights into Oxidative Stress and Autophagy

News: Sucralose disrupts male fertility by damaging sperm and altering hormones in animal study

Sucralose Harms Sperm and Hormones: Study

Male infertility is a global health concern, impacting 8% to 12% of couples and contributing to nearly half of infertility cases worldwide. Male infertility is affected by hormonal, environmental, and genetic factors that impede spermatogenesis and reproductive function. Dietary and lifestyle changes, including the elevated intake of non-nutritive sweeteners (NNSs) and sugar-sweetened beverages, are among these factors implicated in the growing prevalence of infertility.

Sucralose, an NNS, constitutes 30% of the sweetener market in the United States. Although sucralose has antibacterial properties and lower calories, there are emerging concerns about potential health risks and environmental persistence. It is also a persistent contaminant in aquatic systems, with studies revealing its consistent presence throughout the urban water cycle. Notably, the study highlights concerns about sucralose-6-acetate, a genotoxic byproduct of sucralose manufacturing and metabolism, which may exacerbate health and environmental risks. Despite research on NNSs, data on potential links between sucralose and male infertility are limited.

About the study

In the present study, researchers evaluated the effects of sucralose on male reproductive health. Male Sprague-Dawley (SD) rats, aged six weeks, were acclimated for a week under controlled conditions and subsequently randomized to one of four experimental groups. Sucralose was administered at 1.5 mg/kg, 15 mg/kg, 45 mg/kg, or 90 mg/kg for two months.

The controls received deionized water. Body weight was monitored weekly for eight weeks. At the end of the study, animals were euthanized, and blood samples were collected for biochemical analyses. Organs such as the liver, spleen, heart, testes, epididymis, and kidneys were harvested for histopathological evaluation.

The cauda epididymis was cut into pieces and briefly maintained in culture medium, and the supernatant was used for sperm motility analysis. Sperm samples were subject to a Western blot analysis to evaluate DNA damage markers. Besides, enzyme-linked immunosorbent assay was used to measure follicle-stimulating hormone (FSH), luteinizing hormone (LH), and Kisspeptin1 (KISS1).

Chemiluminescence immunoassays were performed to measure serum testosterone, alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Further, mouse Sertoli cells (TM4) and Leydig cells (TM3) were treated with varying concentrations of sucralose for 24–72 hours. These cells were subject to intracellular reactive oxygen species (ROS), cell viability, and Western blot analyses. To assess autophagy-lysosome dysfunction, researchers used Bafilomycin A1, a compound that blocks lysosomal acidification, revealing impaired fusion of autophagosomes and lysosomes.

The Kolmogorov-Smirnov test assessed data normality. Non-parametric tests were applied for data violating normality assumptions. A two-way analysis of variance was performed to evaluate the effects of sucralose and exposure duration. Group differences were compared using the Mann-Whitney U test or the Student’s t-test.

Findings

TM3 and TM4 cells exposed to varying sucralose concentrations (1 μM, 10 μM, 100 μM, 1000 μM, and 10,000 μM) had significantly lower cell viability. Cells also showed higher levels of microtubule-associated protein 1A/1B light chain 3B, form II (LC3B-II) at 1000 or 10,000 μM and slightly lower p62 levels. These changes, combined with reduced cathepsin B (a lysosomal enzyme), suggest impaired autophagic degradation. Following sucralose treatment, there was a significantly lower expression of cathepsin B, indicative of impaired lysosomal function.

ROS levels in TM3 and TM4 cells after sucralose exposure at 1 mM, 2.5 mM, 5 mM, 7.5 mM, or 10 mM were significantly higher; sucralose-treated cells also had elevated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and heme-oxygenase 1 (HO-1) levels, suggesting an increase in oxidative stress. Notably, exposed cells had a reduction in taste receptor type 1 member 3 (T1R3) protein expression.

Moreover, co-treatment with a known T1R3 antagonist (lactisole) repressed T1R3 expression more than sucralose treatment alone. To further examine the relevance of T1R3 modulation, rat pituitary adenoma cells (RC-4B/C) were treated with sucralose, with or without lactisole co-treatment. This revealed a significant reduction in LH levels dose-dependently. Lactisole co-treatment exacerbated this suppression, especially at lower sucralose levels.

SD rats exposed to sucralose showed no differences in body weight, AST or ALT levels, and heart and liver indices between groups. Although the appearance of reproductive organs was not remarkably different, exposed animals had significantly lower epididymis and testis indices. Further, rats showed significant reductions in serum testosterone and LH levels and serum and testicular KISS1 levels. KISS1, a key regulator of the hypothalamic-pituitary-gonadal (HPG) axis, is critical for initiating puberty and maintaining reproductive hormone balance; its suppression may directly contribute to impaired fertility.

Sucralose exposure also reduced protein levels of T1R3 in the testes. Exposed animals had abnormal sperm morphology (with coiled and bent tails) and lower sperm viability. Histological examination of the testes showed changes in the seminiferous epithelium, including severe vacuolization, disrupted germ cell organization, and nuclear condensation.

DNA damage was also observed in sperm, indicative of cellular impairment. The testes of sucralose-exposed animals had higher levels of LC3B and lower levels of p62, suggesting changes in autophagy. Moreover, exposed animals had higher serum and testicular levels of malondialdehyde, indicating increased lipid peroxidation.

Conclusions

Taken together, sucralose exposure adversely affects male reproductive outcomes in rats by inducing oxidative stress, causing DNA damage, and disrupting autophagy. The study notes that in vitro doses (up to 10 mM) likely exceed typical human dietary exposure, warranting caution in extrapolating results to real-world intake levels.

The findings underscore the need for careful evaluation of dietary NNSs and call for better food safety regulations to alleviate potential risks. Additionally, the environmental persistence of sucralose and its byproduct, sucralose-6-acetate, highlights broader ecological concerns.

Further studies are required to examine dose-response relationships, long-term effects, and underlying molecular mechanisms to comprehensively delineate the adverse effects of sucralose.

Look for More Information

Original Study: Exposure to Sucralose and Its Effects on Testicular Damage and Male Infertility: Insights into Oxidative Stress and Autophagy

News: Sucralose disrupts male fertility by damaging sperm and altering hormones in animal study

Further context

This article is a repost from News-Medical, covering a recent study led the research team of Professor Shih-Min Hsia at Taipei Medical University (TMU)’s College of Nutrition. The study investigates the potential effects of sucralose on male reproductive health. The research has also been featured by New York Post and MSN, highlighting the growing international attention to TMU’s contributions to preventive and translational medicine.